
Unikernels: Paths to Production & 
Current Research Trends

ASPLOS 2022 Unikraft Tutorial, March 1st

Hugo Lefeuvre
The University of Manchester



A Decade of Unikernels...

2

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".



A Decade of Unikernels...

3

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work



Specialization / Performance
Unikraft (EuroSys'21)

Mirage (ASPLOS'13)ClickOS (NSDI'24)

A Decade of Unikernels...

4

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work



Specialization / Performance
Unikraft (EuroSys'21)

Mirage (ASPLOS'13)ClickOS (NSDI'24)

A Decade of Unikernels...

5

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Scalability

LightVM (SOSP'17)

USETL (ApSys)Firecracker (NSDI'21)

Solo5 (HotCloud/SoCC)

Now, quite a large body of work



Specialization / Performance
Unikraft (EuroSys'21)

Mirage (ASPLOS'13)ClickOS (NSDI'24)

A Decade of Unikernels...

6

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Compatibility
HermiTux (VEE'19)

Lupine Linux (EuroSys'20)

OSv (ATC'14)

EbbRT (OSDI'16)

Scalability

LightVM (SOSP'17)

USETL (ApSys)Firecracker (NSDI'21)

Solo5 (HotCloud/SoCC)

Now, quite a large body of work



A Decade of Unikernels...

7

So, a lot of interest, a lot of nice ideas.



A Decade of Unikernels...

8

So, a lot of interest, a lot of nice ideas.

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.



A Decade of Unikernels...

9

So, a lot of interest, a lot of nice ideas.

Why?

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.



A Decade of Unikernels...

10

So, a lot of interest, a lot of nice ideas.

Why?

Current unikernels are just (mostly academic) research prototypes

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.



Unikernels are Research Prototypes

11

Since they are research prototypes, none managed (or even tried!) to:



Unikernels are Research Prototypes

12

Since they are research prototypes, none managed (or even tried!) to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows



Unikernels are Research Prototypes

13

Since they are research prototypes, none managed (or even tried!) to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability



Unikernels are Research Prototypes

14

Since they are research prototypes, none managed (or even tried!) to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

Now, if we want to see unikernels in production one day, one project must 
show that it can be done because some of these items are not trivial. We 
want this project to be Unikraft.



Unikernels are Research Prototypes

15

Since they are research prototypes, none managed (or even tried!) to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

Now, if we want to see unikernels in production one day, one project must 
show that it can be done because some of these items are not trivial. We 
want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it 
reaching full maturity in the coming year



Unikernels are Research Prototypes

16

Since they are research prototypes, none managed (or even tried!) to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

Now, if we want to see unikernels in production one day, one project must 
show that it can be done because some of these items are not trivial. We 
want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it 
reaching full maturity in the coming year



In the Works for Unikraft

17

Security and Stability

Integration and Scalability



In the Works for Unikraft

18

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability



In the Works for Unikraft

19

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability

• Making Unikraft just as debuggable as any userland application



In the Works for Unikraft

20

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application



In the Works for Unikraft

21

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application

• Matching the security/hardening features of mainstream OSes



In the Works for Unikraft

22

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application

• Production-grade testing and fuzzing of Unikraft
• Matching the security/hardening features of mainstream OSes



In the Works for Unikraft

23

Security and Stability

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application

• Production-grade testing and fuzzing of Unikraft
• Matching the security/hardening features of mainstream OSes

• Specialization for the masses: automatic reasoning about 
Unikraft configurations



In the Works for Unikraft

24

Security and Stability
• Beyond the single trust domain: compartmentalizing Unikraft?

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application

• Production-grade testing and fuzzing of Unikraft
• Matching the security/hardening features of mainstream OSes

• Specialization for the masses: automatic reasoning about 
Unikraft configurations



25

Integration & Scalability



Integration and Scalability

26

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)

Why no unikernels in production?

No good integration.



Integration and Scalability

27

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)

Why no unikernels in production?

No good integration.

https://thenewstack.io/good-luck-debugging-unikernels-joyents-chief-technology-says/

No good debugging facilities.



In the Works: Integration

28

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.



In the Works: Integration

29

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload



In the Works: Integration

30

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload

No need to reinvent the wheel: make unikernels fit in these frameworks



In the Works: Integration

31

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9_cg

We are almost there.
• Integration of unikernels in Kubernetes infrastucture

• OCI-compliant unikernel runtime interface 

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload

No need to reinvent the wheel: make unikernels fit in these frameworks

https://www.youtube.com/watch?v=cV-xawN9_cg


In the Works: Integration

32

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9_cg

We are almost there.
• Integration of unikernels in Kubernetes infrastucture

• OCI-compliant unikernel runtime interface 

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload

• "A Unikernel in OCI Clothing": make unikernels look and feel like containers​

No need to reinvent the wheel: make unikernels fit in these frameworks

https://www.youtube.com/watch?v=cV-xawN9_cg


In the Works: Integration

33

People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9_cg

We are almost there.
• Integration of unikernels in Kubernetes infrastucture

• OCI-compliant unikernel runtime interface 

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload

• "A Unikernel in OCI Clothing": make unikernels look and feel like containers​

No need to reinvent the wheel: make unikernels fit in these frameworks

Good Progress

• More progress to make on the FaaS side?

https://www.youtube.com/watch?v=cV-xawN9_cg


In the Works: Debugging

34

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

Vast engineering effort towards seamless introspection and debugging

https://fosdem.org/2022/schedule/event/skuenzer/


In the Works: Debugging

35

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

• Production-grade monitoring with Prometheus:
• Monitor unikernels like any general-purpose VM
• Setup alarms when values pass thresholds, etc.

Vast engineering effort towards seamless introspection and debugging

https://fosdem.org/2022/schedule/event/skuenzer/


In the Works: Debugging

36

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

• Production-grade monitoring with Prometheus:
• Monitor unikernels like any general-purpose VM
• Setup alarms when values pass thresholds, etc.

Vast engineering effort towards seamless introspection and debugging

• OS-level native GDB debugger support:
• Debug unikernels like any userland application
• Support for threads, OS-specific constructs 

(asserts, kernel crashes, etc.)
• Uniform debugging experience all platforms

https://fosdem.org/2022/schedule/event/skuenzer/


In the Works: Debugging

37

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

Good Progress

• Production-grade monitoring with Prometheus:
• Monitor unikernels like any general-purpose VM
• Setup alarms when values pass thresholds, etc.

Vast engineering effort towards seamless introspection and debugging

• OS-level native GDB debugger support:
• Debug unikernels like any userland application
• Support for threads, OS-specific constructs 

(asserts, kernel crashes, etc.)
• Uniform debugging experience all platforms

https://fosdem.org/2022/schedule/event/skuenzer/


Outstanding Question: Scalability?

38



Outstanding Question: Scalability?

39

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host



Outstanding Question: Scalability?

40

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host



Outstanding Question: Scalability?

41

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?



Outstanding Question: Scalability?

42

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?

Pretty much all unikernel papers evaluate 
systems with 1 CPU = 1vCPU static pinning...



Outstanding Question: Scalability?

43

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?

Pretty much all unikernel papers evaluate 
systems with 1 CPU = 1vCPU static pinning...

With such density: how do things look on the 
networking side? Have hypervisors really been thought 
for this kind of usage?



44

Security & Stability



Security and Stability

45

Why no unikernels in production?

Because of security.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf



Security and Stability

46

Why no unikernels in production?

Because of security.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf

...and because of security

https://thenewstack.io/unikernels-will-create-security-problems-solve/



Getting in Line with Mainstream OSes

47



Getting in Line with Mainstream OSes

48

Write or Execute



Getting in Line with Mainstream OSes

49

Write or Execute

Pointer authentication



Getting in Line with Mainstream OSes

50

Write or Execute

Pointer authentication
ASLR



Getting in Line with Mainstream OSes

51

Write or Execute

Pointer authentication
ASLR

... and stack protection, KASan, etc.



Getting in Line with Mainstream OSes

52

Write or Execute

Pointer authentication
ASLR

... and stack protection, KASan, etc.

Good Progress



In the Works: Testing, Fuzz Testing

53

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing



In the Works: Testing, Fuzz Testing

54

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Production-grade testing =
• Continuous testing (CI/CD, test suite)
• Destructive testing (Fuzzing)



In the Works: Testing, Fuzz Testing

55

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Production-grade testing =
• Continuous testing (CI/CD, test suite)
• Destructive testing (Fuzzing)

Significant efforts on continuous testing:



In the Works: Testing, Fuzz Testing

56

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Production-grade testing =
• Continuous testing (CI/CD, test suite)
• Destructive testing (Fuzzing)

Significant efforts on continuous testing:

A. Jung @ FOSDEM'22
https://fosdem.org/2022/schedule/event/massive_unikernel_matrices_with_unikraft_concourse_and_more/

Good Progress

• CI/CD pipeline tests patches systematically (Concourse)
• Application-level tests but also kernel unit-tests (uktest)

https://fosdem.org/2022/schedule/event/massive_unikernel_matrices_with_unikraft_concourse_and_more/%E2%80%8B


In the Works: Testing, Fuzz Testing

57

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well



In the Works: Testing, Fuzz Testing

58

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well
• Not entirely trivial, as most OS fuzzers are tailored for Linux



In the Works: Testing, Fuzz Testing

59

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well
• Not entirely trivial, as most OS fuzzers are tailored for Linux Not "just" a matter 

of porting Syzkaller 
to Unikraft



In the Works: Testing, Fuzz Testing

60

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well
• Not entirely trivial, as most OS fuzzers are tailored for Linux

• Coverage measurement (no Kcov, porting to gcov not 
without changes)

• Not every system call is fully implemented

Not "just" a matter 
of porting Syzkaller 
to Unikraft



In the Works: Testing, Fuzz Testing

61

To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well
• Not entirely trivial, as most OS fuzzers are tailored for Linux

• How does unikernel fuzzing impact the architecture of fuzzers?
• How to design a fuzzer that's ready to "plug and play" in any POSIX OS?

• Coverage measurement (no Kcov, porting to gcov not 
without changes)

• Not every system call is fully implemented

Not "just" a matter 
of porting Syzkaller 
to Unikraft



In the Works: Automatic Specialization

62

Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 

https://www.youtube.com/watch?v=YLf86gcHW4E


In the Works: Automatic Specialization

63

Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 

Unikernels pitch specialization:
• Your best Nginx configuration is not your best SQLite configuration
• ...and probably not your best Redis configuration either

https://www.youtube.com/watch?v=YLf86gcHW4E


In the Works: Automatic Specialization

64

Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 

Unikernels pitch specialization:
• Your best Nginx configuration is not your best SQLite configuration
• ...and probably not your best Redis configuration either

The number of possible configurations: astronomical scale

https://www.youtube.com/watch?v=YLf86gcHW4E


In the Works: Automatic Specialization

65

Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 

Unikernels pitch specialization:
• Your best Nginx configuration is not your best SQLite configuration
• ...and probably not your best Redis configuration either

The number of possible configurations: astronomical scale
• Small subset of configuration options (Nginx) ~ 1013

• How do you explore this? Can you use optimization algorithms? ML?

https://www.youtube.com/watch?v=YLf86gcHW4E


In the Works: Compartmentalization

66



In the Works: Compartmentalization

67

Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.



In the Works: Compartmentalization

68

Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety, 
properties, requirements...



In the Works: Compartmentalization

69

Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety, 
properties, requirements...

And at the same time we see (re-)appearing a lot of lightweight isolation 
mechanisms (protection keys, HW capabilities, SFI, etc.)



In the Works: Compartmentalization

70

There is an opportunity to use these mechanisms to make unikernels 
even safer without yielding their benefits!



In the Works: Compartmentalization

71

There is an opportunity to use these mechanisms to make unikernels 
even safer without yielding their benefits!

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)

This is what initially motivated our work FlexOS: can we reconcile 
unikernels/libOSes with isolation to obtain a new OS model that offers not only 
specialization towards performance, but also towards safety?

https://fosdem.org/2022/schedule/event/tee_flexos/


In the Works: Compartmentalization

72

There is an opportunity to use these mechanisms to make unikernels 
even safer without yielding their benefits!

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)

This is what initially motivated our work FlexOS: can we reconcile 
unikernels/libOSes with isolation to obtain a new OS model that offers not only 
specialization towards performance, but also towards safety?

Other groups explored this direction: CubicleOS (also ASPLOS, 2021). Explore 
intra-unikernel isolation with Intel MPK.

https://fosdem.org/2022/schedule/event/tee_flexos/


73

How about Compatibility?



Compatibility: a Solved Problem?

74

Historical unikernels: hand-written for an application (ClickOS).



Compatibility: a Solved Problem?

75

Historical unikernels: hand-written for an application (ClickOS).
Terrible Compatibility



Compatibility: a Solved Problem?

76

Historical unikernels: hand-written for an application (ClickOS).

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Terrible Compatibility



Compatibility: a Solved Problem?

77

Historical unikernels: hand-written for an application (ClickOS).

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Terrible Compatibility

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

Graphene/Gramine: https://gramineproject.io/



Compatibility: a Solved Problem?

78

Historical unikernels: hand-written for an application (ClickOS).

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Terrible Compatibility

To be clear: Unikraft is neither fully Linux compatible, nor fully POSIX compliant!
• The good old fork() problem
• Not all system calls are fully implemented

But do you really need to be fully compatible to be useful?

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

Graphene/Gramine: https://gramineproject.io/



Compatibility: a Solved Problem?

79

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for 
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot 
use threads).

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels 

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels


Compatibility: a Solved Problem?

80

But do you really need to be fully compatible to be useful?

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

Many applications that use unsupported features tend to be bad candidates for 
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot 
use threads).

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels 

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels


Compatibility: a Solved Problem?

81

But do you really need to be fully compatible to be useful?

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

Many applications that use unsupported features tend to be bad candidates for 
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot 
use threads).

Given the benefits of Unikraft, a week of porting is a minor annoyance.
All you need is a good application test-suite (but you have one, right?      )

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels 

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels


82

Conclusion



In a Nutshell

83

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:



In a Nutshell

84

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows



In a Nutshell

85

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability



In a Nutshell

86

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

And that's fine, because they were just research projects



In a Nutshell

87

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must 
manage it. We want this project to be Unikraft.



In a Nutshell

88

In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must 
manage it. We want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it 
reaching full maturity in the coming year



In a Nutshell

89

Over time, doing all this engineering proved fruitful on the research side



In a Nutshell

90

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such 
that undergrads and grad students quickly get to understand it



In a Nutshell

91

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such 
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in 
the long run



In a Nutshell

92

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such 
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in 
the long run

What will the broader systems community build with Unikraft?



Unikraft Community: https://unikraft.org/
Unikraft Cloud: https://unikraft.io/
Code: https://github.com/unikraft

Pushing Unikernels to Production!

https://unikraft.org/
https://unikraft.io/
https://github.com/unikraft

	Slide 1
	A Decade of Unikernels...
	A Decade of Unikernels... (2)
	A Decade of Unikernels... (3)
	A Decade of Unikernels... (4)
	A Decade of Unikernels... (5)
	A Decade of Unikernels... (6)
	A Decade of Unikernels... (7)
	A Decade of Unikernels... (8)
	A Decade of Unikernels... (9)
	Unikernels are Research Prototypes
	Unikernels are Research Prototypes (2)
	Unikernels are Research Prototypes (3)
	Unikernels are Research Prototypes (4)
	Unikernels are Research Prototypes (5)
	Unikernels are Research Prototypes (6)
	In the Works for Unikraft
	In the Works for Unikraft (2)
	In the Works for Unikraft (3)
	In the Works for Unikraft (4)
	In the Works for Unikraft (5)
	In the Works for Unikraft (6)
	In the Works for Unikraft (7)
	In the Works for Unikraft (8)
	Integration & Scalability
	Integration and Scalability
	Integration and Scalability (2)
	In the Works: Integration
	In the Works: Integration (2)
	In the Works: Integration (3)
	In the Works: Integration (4)
	In the Works: Integration (5)
	In the Works: Integration (6)
	In the Works: Debugging
	In the Works: Debugging (2)
	In the Works: Debugging (3)
	In the Works: Debugging (4)
	Outstanding Question: Scalability?
	Outstanding Question: Scalability? (2)
	Outstanding Question: Scalability? (3)
	Outstanding Question: Scalability? (4)
	Outstanding Question: Scalability? (5)
	Outstanding Question: Scalability? (6)
	Security & Stability
	Security and Stability
	Security and Stability (2)
	Getting in Line with Mainstream OSes
	Getting in Line with Mainstream OSes (2)
	Getting in Line with Mainstream OSes (3)
	Getting in Line with Mainstream OSes (4)
	Getting in Line with Mainstream OSes (5)
	Getting in Line with Mainstream OSes (6)
	In the Works: Testing, Fuzz Testing
	In the Works: Testing, Fuzz Testing (2)
	In the Works: Testing, Fuzz Testing (3)
	In the Works: Testing, Fuzz Testing (4)
	In the Works: Testing, Fuzz Testing (5)
	In the Works: Testing, Fuzz Testing (6)
	In the Works: Testing, Fuzz Testing (7)
	In the Works: Testing, Fuzz Testing (8)
	In the Works: Testing, Fuzz Testing (9)
	In the Works: Automatic Specialization
	In the Works: Automatic Specialization (2)
	In the Works: Automatic Specialization (3)
	In the Works: Automatic Specialization (4)
	In the Works: Compartmentalization
	In the Works: Compartmentalization (2)
	In the Works: Compartmentalization (3)
	In the Works: Compartmentalization (4)
	In the Works: Compartmentalization (5)
	In the Works: Compartmentalization (6)
	In the Works: Compartmentalization (7)
	How about Compatibility?
	Compatibility: a Solved Problem?
	Compatibility: a Solved Problem? (2)
	Compatibility: a Solved Problem? (3)
	Compatibility: a Solved Problem? (4)
	Compatibility: a Solved Problem? (5)
	Compatibility: a Solved Problem? (6)
	Compatibility: a Solved Problem? (7)
	Compatibility: a Solved Problem? (8)
	Conclusion
	In a Nutshell
	In a Nutshell (2)
	In a Nutshell (3)
	In a Nutshell (4)
	In a Nutshell (5)
	In a Nutshell (6)
	In a Nutshell (7)
	In a Nutshell (8)
	In a Nutshell (9)
	In a Nutshell (10)
	Slide 93

