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~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Compatibility
HermiTux (VEE'19)

Lupine Linux (EuroSys'20)

OSv (ATC'14)

EbbRT (OSDI'16)

Scalability

LightVM (SOSP'17)

USETL (ApSys)Firecracker (NSDI'21)

Solo5 (HotCloud/SoCC)

Now, quite a large body of work
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So, a lot of interest, a lot of nice ideas.

Why?

Current unikernels are just (mostly academic) research prototypes

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.
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Security and Stability
• Beyond the single trust domain: compartmentalizing Unikraft?

• Making Unikraft fit for classical deployment 
workflows (Kubernetes, etc.)

Integration and Scalability • Open question: real world high-density: achieving 100s 
of unikernels per host?

• Making Unikraft just as debuggable as any userland application

• Production-grade testing and fuzzing of Unikraft
• Matching the security/hardening features of mainstream OSes

• Specialization for the masses: automatic reasoning about 
Unikraft configurations
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Why no unikernels in production?
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https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)

Why no unikernels in production?

No good integration.

https://thenewstack.io/good-luck-debugging-unikernels-joyents-chief-technology-says/

No good debugging facilities.
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People need integration of unikernels into orchestration frameworks to truly 
leverage their benefits.

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9_cg

We are almost there.
• Integration of unikernels in Kubernetes infrastucture

• OCI-compliant unikernel runtime interface 

Typically with

(etc.)

• Dynamically and quickly provision new services
• Schedule/Reschedule services based on workload

• "A Unikernel in OCI Clothing": make unikernels look and feel like containers​

No need to reinvent the wheel: make unikernels fit in these frameworks

Good Progress

• More progress to make on the FaaS side?

https://www.youtube.com/watch?v=cV-xawN9_cg
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S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

Good Progress

• Production-grade monitoring with Prometheus:
• Monitor unikernels like any general-purpose VM
• Setup alarms when values pass thresholds, etc.

Vast engineering effort towards seamless introspection and debugging

• OS-level native GDB debugger support:
• Debug unikernels like any userland application
• Support for threads, OS-specific constructs 

(asserts, kernel crashes, etc.)
• Uniform debugging experience all platforms

https://fosdem.org/2022/schedule/event/skuenzer/


Outstanding Question: Scalability?

38



Outstanding Question: Scalability?

39

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host



Outstanding Question: Scalability?

40

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host



Outstanding Question: Scalability?

41

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?



Outstanding Question: Scalability?

42

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?

Pretty much all unikernel papers evaluate 
systems with 1 CPU = 1vCPU static pinning...



Outstanding Question: Scalability?

43

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

LightVM (SOSP'17) paper: 1000s of 
noop unikernels on a single host

… but are we ready to see 50 Nginx instances on a 
single host?​ Let alone 100s?

Pretty much all unikernel papers evaluate 
systems with 1 CPU = 1vCPU static pinning...

With such density: how do things look on the 
networking side? Have hypervisors really been thought 
for this kind of usage?



44

Security & Stability



Security and Stability

45

Why no unikernels in production?

Because of security.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf
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Why no unikernels in production?

Because of security.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf

...and because of security

https://thenewstack.io/unikernels-will-create-security-problems-solve/
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Write or Execute

Pointer authentication
ASLR

... and stack protection, KASan, etc.

Good Progress
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To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Production-grade testing =
• Continuous testing (CI/CD, test suite)
• Destructive testing (Fuzzing)

Significant efforts on continuous testing:

A. Jung @ FOSDEM'22
https://fosdem.org/2022/schedule/event/massive_unikernel_matrices_with_unikraft_concourse_and_more/

Good Progress

• CI/CD pipeline tests patches systematically (Concourse)
• Application-level tests but also kernel unit-tests (uktest)

https://fosdem.org/2022/schedule/event/massive_unikernel_matrices_with_unikraft_concourse_and_more/%E2%80%8B
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To go mainstream, unikernels need not only hardening that's in line with 
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well
• Not entirely trivial, as most OS fuzzers are tailored for Linux

• How does unikernel fuzzing impact the architecture of fuzzers?
• How to design a fuzzer that's ready to "plug and play" in any POSIX OS?

• Coverage measurement (no Kcov, porting to gcov not 
without changes)

• Not every system call is fully implemented

Not "just" a matter 
of porting Syzkaller 
to Unikraft
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Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 
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Another end of the "testing" topic: how do you determine how good a 
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHW4E 

Unikernels pitch specialization:
• Your best Nginx configuration is not your best SQLite configuration
• ...and probably not your best Redis configuration either

The number of possible configurations: astronomical scale
• Small subset of configuration options (Nginx) ~ 1013

• How do you explore this? Can you use optimization algorithms? ML?

https://www.youtube.com/watch?v=YLf86gcHW4E
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Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety, 
properties, requirements...

And at the same time we see (re-)appearing a lot of lightweight isolation 
mechanisms (protection keys, HW capabilities, SFI, etc.)
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unikernels/libOSes with isolation to obtain a new OS model that offers not only 
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There is an opportunity to use these mechanisms to make unikernels 
even safer without yielding their benefits!

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)

This is what initially motivated our work FlexOS: can we reconcile 
unikernels/libOSes with isolation to obtain a new OS model that offers not only 
specialization towards performance, but also towards safety?

Other groups explored this direction: CubicleOS (also ASPLOS, 2021). Explore 
intra-unikernel isolation with Intel MPK.

https://fosdem.org/2022/schedule/event/tee_flexos/
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Historical unikernels: hand-written for an application (ClickOS).

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Terrible Compatibility

To be clear: Unikraft is neither fully Linux compatible, nor fully POSIX compliant!
• The good old fork() problem
• Not all system calls are fully implemented

But do you really need to be fully compatible to be useful?

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

Graphene/Gramine: https://gramineproject.io/
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But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for 
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot 
use threads).

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels 

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels
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But do you really need to be fully compatible to be useful?

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

Many applications that use unsupported features tend to be bad candidates for 
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot 
use threads).

Given the benefits of Unikraft, a week of porting is a minor annoyance.
All you need is a good application test-suite (but you have one, right?      )

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels 

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels
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that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
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In the last decade we've seen a lot of unikernels come and go, but none 
that managed to:
• provide good compatibility
• excellent performance
• transparent integration in major 

deployment workflows

• take security seriously
• meet production-grade testing standards
• good debuggability

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must 
manage it. We want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it 
reaching full maturity in the coming year
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Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such 
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in 
the long run

What will the broader systems community build with Unikraft?



Unikraft Community: https://unikraft.org/
Unikraft Cloud: https://unikraft.io/
Code: https://github.com/unikraft

Pushing Unikernels to Production!

https://unikraft.org/
https://unikraft.io/
https://github.com/unikraft
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