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Current unikernels are just (mostly academic) research prototypes
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Integration and Scalability

Why no unikernels in production?

[-] & yonkeltron 13 days ago | link
“  It's always been a mystery to me why Unikernels haven't caught on more. Especially with earlier toolkiits like
UniK and continuing work such as ©Sv. Does anyone have production experience or a tale of why they didn't

pick Unikernels?

[-] :?::‘: david_chisnall 13 days ago | link

The problems are not technical, they're economic. If | want to deploy a unikernel in the cloud, 1 am deploying as
laas (i.e. a VM) where the unit of accounting is typically pairs of vCPUs and gigabytes of RAM, on an hourly
basis. If | have the kind of problem where a unikernel would be a good solution, then | can deploy it as a Faas
system and be billed per CPU second and per RAM MIB second. None of the cloud providers (yet?) have a way
of deploying unikernels with FaaS-like pricing and so if you make something small and efficient as a unikernel
then it will have a load of unused CPU time and RAM that you're still being charged for. Unikernels only make
economic sense if you're deploying your own datacenter.

No good integration.

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)
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Why no unikernels in production?

[-] & yonkeltron 13 days ago | link
“  It's always been a mystery to me why Unikernels haven't caught on more. Especially with earlier toolkiits like
UniK and continuing work such as ©Sv. Does anyone have production experience or a tale of why they didn't

pick Unikernels?

-] #% david_chisnall 13 days ago | link
*  The problems are not technical, they're economic. If | want to deploy a unikernel in the cloud, | am deploying as
laas (i.e. a VM) where the unit of accounting is typically pairs of vCPUs and gigabytes of RAM, on an hourly
THENEWSTACK Podcasts Events Ebooks¥ Newsletter Sponsorship would be a QDDd solution. then | can deploy it as a Faas
Architecture ¥ Development ¥ Operations ¥ Q iB second. None of the cloud providers (yet?) have a way
f you make something small and efficient as a unikernel

AINERS / 5 that you're still being charged for. Unikernels only make
Unikernels Can’t be Debugged, ter.

Joyent’s Chief of Technology

Argues No good integration.

25 Jan 2016 9:00am, by Joab Jackson

No good debugging facilities.

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)
https://thenewstack.io/good-luck-debugging-unikernels-joyents-chief-technology-says/
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In the Works: Integrah

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. . . . . Typically with
* Dynamically and quickly provision new services

* Schedule/Reschedule services based on workload kubernetes
(etc.)

No need to reinvent the wheel: make unikernels fit in these frameworks

We are almost there.
* Integration of unikernels in Kubernetes infrastucture
* OCIl-compliant unikernel runtime interface
* "A Unikernel in OCI Clothing": make unikernels look and feel like containers

* More progress to make on the FaaS side?
A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9 cg
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In the Works: Debugging

Vast engineering effort towards seamless introspection and debugging

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/
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As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host
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With such density: how do things look on the
networking side? Have hypervisors really been thought
for this kind of usage?
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noop unikernels on a single host
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Security and Stability

Why no unikernels in production?

Because of security. <
11 Conclusion NCCQroup

Much to the contrary of grandiose security claims often made by unikernel developers, the evidence thus far
indicates that unikernels are decidedly not secure. [Bue] Having examined two major unikernels, Rumprun
and IncludeOSs, a worrying trend is already apparent: unikernels often lack even the most basic security
features, especially with regard to memaory corruption. ASLR, consistent WX policy, and stack, heap, and
standard library hardening are generally either missing, improperly implemented, or intentionally disabled.
This would be bad enough in a full, general-purpose operating system, but it is made even worse in uniker-
nels, where application and kernel code run together and share an address space. An attacker who gains
code execution in the application can immediately go on to invoke kernel-level functionality, make hyper-
calls, perform raw packet /O, and so on. This makes unikernels a particular liability when running alongside
other types of hosts, as they can be used as pivot points from which to attack their neighbors with even more
potency than would be possible an a ful-OS WM or container (at least without privilege escalation).

Given how low the bar has been set, there are numerous ways in which the currently abysmal state of
unikernel security could improve. Aside from the protections we tested for — i.e. those typically found in
modern, full-featured operating systems — there are several hypervisor-specific features that can be taken
adwvantage of in order to improve unikernel security. For instance, many privileged operations, e.g. page
table management, packet I/O, etc. can be performed via requests to the hypervisor rather than directly by
the guest itself through emulated devices; such functionality is akin to syscalls or ioctls in a full OS.

Monetheless, as it stands, unikemels remain an unsuitable and unappealing choice for production use, and
will likely remain so until their security measures are at least brought in line with those of modern, full-featured

operating systems.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf
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Much to the contrary of grandiose security claims often made by unikernel developers, the evidence thus far

indicates that unikernels are decidedly not secure. [Bue] Having examined two major unikernels, Rumprun

. . . and IncludeOSs, a worrying trend is already apparent: unikernels often lack even the most basic security

Why no unikernels in prOdUCtlon? features, especially with regard to memory corruption. ASLR, consistent W*X policy, and stack, heap, and

standard library hardening are generally either missing, improperly implemented, or intentionally disabled.

This would be bad enough in a full, general-purpose operating system, but it is made even worse in uniker-
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operating systems.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf
https://thenewstack.io/unikernels-will-create-security-problems-solve/
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Getting in Line with Mainstream OSes

Write or Execute

& unikraft/ unikraft < Pubiic L\ Notificatior

<> Code () Issues 93 11 Pull requests 51 ) Discussions () Actions ] Projects 1 @ Security

Virtual Memory API (x86_64, kvm) #338

byNescul marcrittinghaus wants to merge 11 commits into unikraft:staging from marcrittinghaus:mritting/paging [

LY Conversation 7 0 Commits 11 El Checks 0 Files changed 41

s marcrittinghaus commented on Nov 22, 2021 Member | ===

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platform Configuration | Platform Interface Options to enable virtual
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not supported (e.g., Xen) and also add a dependency on ukfalloc and
ukfallocbuddy , the physical memory allocator libraries.
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& unikraft/ unikraft = Pubic L\ Notificatior

<> Code () Issues 93 11 Pull requests 51 ) Discussions () Actions ] Projects 1 @ Security Poi nte r a uth e nti Cati O n

& unikraft/ unikraft ' Pubic £\ Natificatior

Virtual Memory API (x86_64,

dyNe Ry marcrittinghaus wants to merge 11 commits into un <> Code  ( Issues 93 1% Pull requests 51 ) Discussions ® Actions A Projects 1 @ security

L Conversation 7 -0- Commits 11 El Checks

arch/arm/armé64: Introduce pointer authentication support #369

‘ marcrittinghaus commented on Nov 22, 2021
michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 introduce pointer authentication L[

Prerequisite checklist

Read the contribution guidelines regarding submittir) &Y Conversation 7 - Commits 1 [l Checks o [@ Files changed 5
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi i
. michpappas commented on Dec 12, 2021 Member
Updated relevant documentation.
Base target Prerequisite checklist

« Architecture(s): x86_64 Read the contribution guidelines regarding submitting new changes to the project;

« Platform(s): kvm Tested your changes against relevant architectures and platforms;

+ Application(s): N/A Ran the checkpatch.pl on your commit series before opening this PR;

e : o Updated relevant documentation.
Additional configuration

The PR introduces a configuration option under Platfo Base target
memory.
« Architecture(s): armé4
« CONFIG_PABGING=y + Platform(s): kvm
This will automatically disable all platforms currently not » Application(s): Al

ukfallocbuddy , the physical memory allocator libraried
Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.
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() Actions ] Projects 1 @ Security
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& unikraft/ unikraft ' Pubic

<> Code (%) Issues 93 1% Pull requests 51 ) Discussions () Actions

arch/arm/armé4: Introduce pointer authenticat

michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 if

£ Conversation 7 -0- Commits 1 [l Checks o [@ Files changed 5

0 michpappas commented on Dec 12, 2021

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

« Architecture(s): armé4

[\ Notificatior

ASLR

& unikraft / unikraft « Pubic

<> Code () Issues 93 1 Pull requests 51 ) Discussions ® Actions M Projects 1

build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

L) Conversation 7

o Commits 1 [ Checks 0

[® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.
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Write or Execute

... and stack protection, KASan, etc.
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build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

) Conversation 7 -0~ Commits 1 [l Checks o [® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.
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Write or Execute

... and stack protection, KASan, etc.

Virtual Memory API (x86_64,
marcrittinghaus wants to merge 11 commits into un:

L Conversation 7 -0- Commits 11 El Checks

B unikraft/ unikraft = Pubic

marcrittinghaus commented on Nov 22, 2021

Prerequisite checklist

Read the contribution guidelines regarding submittiry
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi
Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platfo
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not
ukfallocbuddy , the physical memory allocator libraried

L\ Notificatior

<> Code () Issues 93 11 Pull requests 51 ) Discussions () Actions ] Projects 1 @ Security Poi nte r a uth e nti Cati O n

& unikraft/ unikraft ' Pubic

<> Code (%) Issues 93 1% Pull requests 51 ) Discussions () Actions

arch/arm/armé4: Introduce pointer authenticat

michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 if

£ Conversation 7 -0- Commits 1 [l Checks o [@ Files changed 5

0 michpappas commented on Dec 12, 2021

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

« Architecture(s): armé4

£\ Notificatior AS L R

& unikraft / unikraft « Pubic

<> Code () Issues 93 1 Pull requests 51 ) Discussions ® Actions M Projects 1

build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

) Conversation 7 -0~ Commits 1 [l Checks o [® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.
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In the Works: Testing, Fuzz Testl

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Production-grade testing =

* Continuous testing (Cl/CD, test suite) ‘@ Concourse

Destructive testing (Fuzzing)

Significant efforts on continuous testing:

* CI/CD pipeline tests patches systematically (Concourse)
* Application-level tests but also kernel unit-tests (uktest)

A.Jung @ FOSDEM'22
https://fosdem.org/2022/schedule/event/massive unikernel matrices with unikraft concourse and more/
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In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

* Not entirely trivial, as most OS fuzzers are tailored for Linux Not "just" a matter

* Coverage measurement (no Kcov, porting to gcov not Sf EOfE”iSVZka“er
. O UnikKra
without changes)

* Not every system call is fully implemented
* How does unikernel fuzzing impact the architecture of fuzzers?
* How to design a fuzzer that's ready to "plug and play" in any POSIX OS?
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In the Works: Automatic Specialization

Another end of the "testing" topic: how do you determine how good a
configuration really is?

Unikernels pitch specialization:
* Your best Nginx configuration is not your best SQLite configuration
* ...and probably not your best Redis configuration either (£

The number of possible configurations: astronomical scale
* Small subset of configuration options (Nginx) ~ 103
* How do you explore this? Can you use optimization algorithms? ML?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHWA4E
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In the Works: Compartmentalization

Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety,
properties, requirements...

And at the same time we see (re-)appearing a lot of lightweight isolation
mechanisms (protection keys, HW capabilities, SFl, etc.)
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In the Works: Compartmentalization

There is an opportunity to use these mechanisms to make unikernels f\ex
even safer without yielding their benefits! OS

This is what initially motivated our work FlexOS: can we reconcile
unikernels/libOSes with isolation to obtain a new OS model that offers not only
specialization towards performance, but also towards safety?

Other groups explored this direction: CubicleOS (also ASPLOS, 2021). Explore
intra-unikernel isolation with Intel MPK.

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)
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Compatibility: a Solved Problem?

. . . . . . Terripy
Historical unikernels: hand-written for an application (C

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

To be clear: Unikraft is neither fully Linux compatible, nor fully POSIX compliant!

* The good old fork() problem
* Not all system calls are fully implemented

But do you really need to be fully compatible to be useful?

Graphene/Gramine: https://gramineproject.io/
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But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels
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Compatibility: a Solved Problem?

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels



https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

Compatibility: a Solved Problem?

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

Given the benefits of Unikraft, a week of porting is a minor annoyance.
All you need is a good application test-suite (but you have one, right? (<))

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels
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In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none
that managed to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must
manage it. We want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it
reaching full maturity in the coming year
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In @ Nutshell

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in
the long run

What will the broader systems community build with Unikraft?



THE

L LINUX

FOUNDATION

Ren

Project

Pushing Unikernels to Production!

Unikraft Community:
Unikraft Cloud:
Code:


https://unikraft.org/
https://unikraft.io/
https://github.com/unikraft

	Slide 1
	A Decade of Unikernels...
	A Decade of Unikernels... (2)
	A Decade of Unikernels... (3)
	A Decade of Unikernels... (4)
	A Decade of Unikernels... (5)
	A Decade of Unikernels... (6)
	A Decade of Unikernels... (7)
	A Decade of Unikernels... (8)
	A Decade of Unikernels... (9)
	Unikernels are Research Prototypes
	Unikernels are Research Prototypes (2)
	Unikernels are Research Prototypes (3)
	Unikernels are Research Prototypes (4)
	Unikernels are Research Prototypes (5)
	Unikernels are Research Prototypes (6)
	In the Works for Unikraft
	In the Works for Unikraft (2)
	In the Works for Unikraft (3)
	In the Works for Unikraft (4)
	In the Works for Unikraft (5)
	In the Works for Unikraft (6)
	In the Works for Unikraft (7)
	In the Works for Unikraft (8)
	Integration & Scalability
	Integration and Scalability
	Integration and Scalability (2)
	In the Works: Integration
	In the Works: Integration (2)
	In the Works: Integration (3)
	In the Works: Integration (4)
	In the Works: Integration (5)
	In the Works: Integration (6)
	In the Works: Debugging
	In the Works: Debugging (2)
	In the Works: Debugging (3)
	In the Works: Debugging (4)
	Outstanding Question: Scalability?
	Outstanding Question: Scalability? (2)
	Outstanding Question: Scalability? (3)
	Outstanding Question: Scalability? (4)
	Outstanding Question: Scalability? (5)
	Outstanding Question: Scalability? (6)
	Security & Stability
	Security and Stability
	Security and Stability (2)
	Getting in Line with Mainstream OSes
	Getting in Line with Mainstream OSes (2)
	Getting in Line with Mainstream OSes (3)
	Getting in Line with Mainstream OSes (4)
	Getting in Line with Mainstream OSes (5)
	Getting in Line with Mainstream OSes (6)
	In the Works: Testing, Fuzz Testing
	In the Works: Testing, Fuzz Testing (2)
	In the Works: Testing, Fuzz Testing (3)
	In the Works: Testing, Fuzz Testing (4)
	In the Works: Testing, Fuzz Testing (5)
	In the Works: Testing, Fuzz Testing (6)
	In the Works: Testing, Fuzz Testing (7)
	In the Works: Testing, Fuzz Testing (8)
	In the Works: Testing, Fuzz Testing (9)
	In the Works: Automatic Specialization
	In the Works: Automatic Specialization (2)
	In the Works: Automatic Specialization (3)
	In the Works: Automatic Specialization (4)
	In the Works: Compartmentalization
	In the Works: Compartmentalization (2)
	In the Works: Compartmentalization (3)
	In the Works: Compartmentalization (4)
	In the Works: Compartmentalization (5)
	In the Works: Compartmentalization (6)
	In the Works: Compartmentalization (7)
	How about Compatibility?
	Compatibility: a Solved Problem?
	Compatibility: a Solved Problem? (2)
	Compatibility: a Solved Problem? (3)
	Compatibility: a Solved Problem? (4)
	Compatibility: a Solved Problem? (5)
	Compatibility: a Solved Problem? (6)
	Compatibility: a Solved Problem? (7)
	Compatibility: a Solved Problem? (8)
	Conclusion
	In a Nutshell
	In a Nutshell (2)
	In a Nutshell (3)
	In a Nutshell (4)
	In a Nutshell (5)
	In a Nutshell (6)
	In a Nutshell (7)
	In a Nutshell (8)
	In a Nutshell (9)
	In a Nutshell (10)
	Slide 93

