THE

L LINUX

FOUNDATION

O¢en

- Project

Unikernels: Paths to Production &
Current Research Trends

Hugo Lefeuvre
The University of Manchester

ASPLOS 2022 Unikraft Tutorial, March 1st

YAWNesisiY [ancaster E2 ¢ LIEGE UNICSRE ‘\\ /4

Ul’liVeI'Sity = b université ACCORDION

A Decade of Unikernels...

~2012: A. Kantee's thesis on Rump kernels

A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

A Decade of Unikernels...

~2012: A. Kantee's thesis on Rump kernels
A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work

A Decade of Unikernels...

~2012: A. Kantee's thesis on Rump kernels
A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work

Click0S (NSDI'24) \irage (ASPLOS'13)
Specialization / Performance

Unikraft (EuroSys'21)

A Decade of Unikernels...

~2012: A. Kantee's thesis on Rump kernels
A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work

LightVM (SOSP'17)

Sl SRRy Mirage (ASPLOS'13) Firecracker (NSDI'21) USETL (ApSys)

Specialization / Performance Scalability

Unikraft (EuroSys'21) Solo5 (HotCloud/SoCC)

A Decade of Unikernels...

~2012: A. Kantee's thesis on Rump kernels
A tad later, Mirage (ASPLOS'13), coined the term "unikernel".

Now, quite a large body of work

LightVM (SOSP'17) EbbRT (OSDI'16)
Firecracker (NSDI'21) USETL (ApSys) Lupine Linux (EuroSys'20)
Specialization / Performance Scalability Compatibility

ClickOS (NSDI'24) Mirage (ASPLOS'13)

Unikraft (EuroSys'21) Solo5 (HotCloud/SoCC) OSv (ATC'14) HermiTux (VEE'19)

A Decade of Unikernels...

So, a lot of interest, a lot of nice ideas.

A Decade of Unikernels...

So, a lot of interest, a lot of nice ideas.

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.

A Decade of Unikernels...

So, a lot of interest, a lot of nice ideas.

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.

Why?

A Decade of Unikernels...

So, a lot of interest, a lot of nice ideas.

And yet, in practice, we don't see unikernels in production (even in the cloud) in 2022.
Why?

Current unikernels are just (mostly academic) research prototypes

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

* provide good compatibility

* excellent performance

* transparent integration in major
deployment workflows

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

Now, if we want to see unikernels in production one day, one project must
show that it can be done because some of these items are not trivial. We
want this project to be Unikraft.

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

Now, if we want to see unikernels in production one day, one project must
show that it can be done because some of these items are not trivial. We
want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it
reaching full maturity in the coming year

Unikernels are Research Prototypes

Since they are research prototypes, none managed (or even tried!) to:

* provide good compatibility — * take security seriously
* excellent performance — * meet production-grade testing standards
— * transparent integration in major —* good debuggability
deployment workflows

Now, if we want to see unikernels in production one day, one project must
show that it can be done because some of these items are not trivial. We
want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it
reaching full maturity in the coming year

In the Works for Unikraft

>

Integration and Scalability

Security and Stability

17

In the Works for Unikraft

>

Integration and Scalability

* Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

Security and Stability

18

In the Works for Unikraft

>

Integration and Scalability

* Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

Security and Stability

19

In the Works for Unikraft

* Open question: real world high-density: achieving 100s

Integration and Scalability of unikernels per host?

Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

Security and Stability

20

In the Works for Unikraft

>

Integration and Scalability

Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

* Open question: real world high-density: achieving 100s
of unikernels per host?

* Matching the security/hardening features of mainstream OSes

Security and Stability

21

In the Works for Unikraft

* Open question: real world high-density: achieving 100s

Integration and Scalability of unikernels per host?

Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

* Matching the security/hardening features of mainstream OSes
* Production-grade testing and fuzzing of Unikraft

Security and Stability

22

In the Works for Unikraft

* Open question: real world high-density: achieving 100s

Integration and Scalability of unikernels per host?

Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

* Matching the security/hardening features of mainstream OSes
* Production-grade testing and fuzzing of Unikraft

* Specialization for the masses: automatic reasoning about
Unikraft configurations

Security and Stability

23

In the Works for Unikraft

* Open question: real world high-density: achieving 100s

Integration and Scalability of unikernels per host?

Making Unikraft fit for classical deployment
workflows (Kubernetes, etc.)

* Making Unikraft just as debuggable as any userland application

* Matching the security/hardening features of mainstream OSes
* Production-grade testing and fuzzing of Unikraft

* Specialization for the masses: automatic reasoning about
Unikraft configurations

* Beyond the single trust domain: compartmentalizing Unikraft?

Security and Stability

24

Integration & Scalability

Integration and Scalability

Why no unikernels in production?

[-] & yonkeltron 13 days ago | link
“ It's always been a mystery to me why Unikernels haven't caught on more. Especially with earlier toolkiits like
UniK and continuing work such as ©Sv. Does anyone have production experience or a tale of why they didn't

pick Unikernels?

[-] :?::‘: david_chisnall 13 days ago | link

The problems are not technical, they're economic. If | want to deploy a unikernel in the cloud, 1 am deploying as
laas (i.e. a VM) where the unit of accounting is typically pairs of vCPUs and gigabytes of RAM, on an hourly
basis. If | have the kind of problem where a unikernel would be a good solution, then | can deploy it as a Faas
system and be billed per CPU second and per RAM MIB second. None of the cloud providers (yet?) have a way
of deploying unikernels with FaaS-like pricing and so if you make something small and efficient as a unikernel
then it will have a load of unused CPU time and RAM that you're still being charged for. Unikernels only make
economic sense if you're deploying your own datacenter.

No good integration.

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)

26

Integration and Scalability

Why no unikernels in production?

[-] & yonkeltron 13 days ago | link
“ It's always been a mystery to me why Unikernels haven't caught on more. Especially with earlier toolkiits like
UniK and continuing work such as ©Sv. Does anyone have production experience or a tale of why they didn't

pick Unikernels?

-] #% david_chisnall 13 days ago | link
* The problems are not technical, they're economic. If | want to deploy a unikernel in the cloud, | am deploying as
laas (i.e. a VM) where the unit of accounting is typically pairs of vCPUs and gigabytes of RAM, on an hourly
THENEWSTACK Podcasts Events Ebooks¥ Newsletter Sponsorship would be a QDDd solution. then | can deploy it as a Faas
Architecture ¥ Development ¥ Operations ¥ Q iB second. None of the cloud providers (yet?) have a way
f you make something small and efficient as a unikernel

AINERS / 5 that you're still being charged for. Unikernels only make
Unikernels Can’t be Debugged, ter.

Joyent’s Chief of Technology

Argues No good integration.

25 Jan 2016 9:00am, by Joab Jackson

No good debugging facilities.

https://lobste.rs/s/cyyx7a/unikraft_fast_secure_open_source (NOT an official Microsoft comment)
https://thenewstack.io/good-luck-debugging-unikernels-joyents-chief-technology-says/

27

In the Works: Integration

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

In the Works: Integration

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. Typically with
* Dynamically and quickly provision new services yPIEaTY

* Schedule/Reschedule services based on workload kubernetes
(etc.)

In the Works: Integration

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. Typically with
* Dynamically and quickly provision new services

* Schedule/Reschedule services based on workload kubernetes
(etc.)

No need to reinvent the wheel: make unikernels fit in these frameworks

In the Works: Integration

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. Typically with
* Dynamically and quickly provision new services

* Schedule/Reschedule services based on workload kubernetes
(etc.)

No need to reinvent the wheel: make unikernels fit in these frameworks

We are almost there.
* Integration of unikernels in Kubernetes infrastucture
* OCIl-compliant unikernel runtime interface

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9 cg

https://www.youtube.com/watch?v=cV-xawN9_cg

In the Works: Integration

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. Typically with
* Dynamically and quickly provision new services

* Schedule/Reschedule services based on workload kubernetes
(etc.)

No need to reinvent the wheel: make unikernels fit in these frameworks

We are almost there.
* Integration of unikernels in Kubernetes infrastucture
* OCIl-compliant unikernel runtime interface
* "A Unikernel in OCI Clothing": make unikernels look and feel like containers

A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9 cg

https://www.youtube.com/watch?v=cV-xawN9_cg

In the Works: Integrah

People need integration of unikernels into orchestration frameworks to truly
leverage their benefits.

. Typically with
* Dynamically and quickly provision new services

* Schedule/Reschedule services based on workload kubernetes
(etc.)

No need to reinvent the wheel: make unikernels fit in these frameworks

We are almost there.
* Integration of unikernels in Kubernetes infrastucture
* OCIl-compliant unikernel runtime interface
* "A Unikernel in OCI Clothing": make unikernels look and feel like containers

* More progress to make on the FaaS side?
A. Jung @ CNCF'21 https://www.youtube.com/watch?v=cV-xawN9 cg

https://www.youtube.com/watch?v=cV-xawN9_cg

In the Works: Debugging

Vast engineering effort towards seamless introspection and debugging

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

34

https://fosdem.org/2022/schedule/event/skuenzer/

In the Works: Debugging

Vast engineering effort towards seamless introspection and debugging

* Production-grade monitoring with Prometheus:
* Monitor unikernels like any general-purpose VM
* Setup alarms when values pass thresholds, etc.

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

35

https://fosdem.org/2022/schedule/event/skuenzer/

In the Works: Debugging

Vast engineering effort towards seamless introspection and debugging

Production-grade monitoring with Prometheus:
* Monitor unikernels like any general-purpose VM
* Setup alarms when values pass thresholds, etc.

OS-level native GDB debugger support:
* Debug unikernels like any userland application
* Support for threads, OS-specific constructs
(asserts, kernel crashes, etc.)
* Uniform debugging experience all platforms

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

36

https://fosdem.org/2022/schedule/event/skuenzer/

In the Works: Debuggi

Vast engineering effort towards seamless introspection and debugging

Production-grade monitoring with Prometheus:
* Monitor unikernels like any general-purpose VM
* Setup alarms when values pass thresholds, etc.

OS-level native GDB debugger support:
* Debug unikernels like any userland application
* Support for threads, OS-specific constructs
(asserts, kernel crashes, etc.)
* Uniform debugging experience all platforms

S. Kuenzer, M. Rittinghaus @ FOSDEM'22 https://fosdem.org/2022/schedule/event/skuenzer/

37

https://fosdem.org/2022/schedule/event/skuenzer/

Outstanding Question: Scalability?

Outstanding Question: Scalability?

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

Outstanding Question: Scalability?

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

65536 . . ;
Docker

16384 LightVM
4096
1024
256

64 |
16
4
1

Time [ms]

IR

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Running VMs/Containers

LightVM (SOSP'17) paper: 1000s of
noop unikernels on a single host

Outstanding Question: Scalability?

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

65536 . . ;
Docker

... but are we ready to see 50 Nginx instances on a et J-J" LightVM

single host? Let alone 100s? 024 |

256
64 |
16

4
1

Time [ms]

IR

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Running VMs/Containers

LightVM (SOSP'17) paper: 1000s of
noop unikernels on a single host

Outstanding Question: Scalability?

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

65536 . . ;
Docker

... but are we ready to see 50 Nginx instances on a et J-J" LightVM

single host? Let alone 100s? 024 |

256
64 |

Time [ms]

Pretty much all unikernel papers evaluate R e

4

SyStemS With 1 CPU = 1VCPU Static pinning'" 1 0 1000 2000 SUI'OU 40IOO 50IOO BOIOO 70IOO 8000

Number of Running VMs/Containers

LightVM (SOSP'17) paper: 1000s of
noop unikernels on a single host

Outstanding Question: Scalability?

As unikernels are evolving towards production, more challenges are likely to arise

We (as a community) claimed massive packing of such VMs on a single host

65536 . . ;
Docker

... but are we ready to see 50 Nginx instances on a et J-J" LightVM

single host? Let alone 100s? 024 |

256
64

Pretty much all unikernel papers evaluate R e

4

systems with 1 CPU = 1vCPU static pinning... 1

Time [ms]

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Running VMs/Containers

With such density: how do things look on the
networking side? Have hypervisors really been thought
for this kind of usage?

LightVM (SOSP'17) paper: 1000s of
noop unikernels on a single host

Security & Stability

Security and Stability

Why no unikernels in production?

Because of security. <
11 Conclusion NCCQroup

Much to the contrary of grandiose security claims often made by unikernel developers, the evidence thus far
indicates that unikernels are decidedly not secure. [Bue] Having examined two major unikernels, Rumprun
and IncludeOSs, a worrying trend is already apparent: unikernels often lack even the most basic security
features, especially with regard to memaory corruption. ASLR, consistent WX policy, and stack, heap, and
standard library hardening are generally either missing, improperly implemented, or intentionally disabled.
This would be bad enough in a full, general-purpose operating system, but it is made even worse in uniker-
nels, where application and kernel code run together and share an address space. An attacker who gains
code execution in the application can immediately go on to invoke kernel-level functionality, make hyper-
calls, perform raw packet /O, and so on. This makes unikernels a particular liability when running alongside
other types of hosts, as they can be used as pivot points from which to attack their neighbors with even more
potency than would be possible an a ful-OS WM or container (at least without privilege escalation).

Given how low the bar has been set, there are numerous ways in which the currently abysmal state of
unikernel security could improve. Aside from the protections we tested for — i.e. those typically found in
modern, full-featured operating systems — there are several hypervisor-specific features that can be taken
adwvantage of in order to improve unikernel security. For instance, many privileged operations, e.g. page
table management, packet I/O, etc. can be performed via requests to the hypervisor rather than directly by
the guest itself through emulated devices; such functionality is akin to syscalls or ioctls in a full OS.

Monetheless, as it stands, unikemels remain an unsuitable and unappealing choice for production use, and
will likely remain so until their security measures are at least brought in line with those of modern, full-featured

operating systems.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf

45

Security and Stability

11 Conclusion NCCOr C)Upﬁ_F

Much to the contrary of grandiose security claims often made by unikernel developers, the evidence thus far

indicates that unikernels are decidedly not secure. [Bue] Having examined two major unikernels, Rumprun

. . . and IncludeOSs, a worrying trend is already apparent: unikernels often lack even the most basic security

Why no unikernels in prOdUCtlon? features, especially with regard to memory corruption. ASLR, consistent W*X policy, and stack, heap, and

standard library hardening are generally either missing, improperly implemented, or intentionally disabled.

This would be bad enough in a full, general-purpose operating system, but it is made even worse in uniker-

THENEWSTACK Podcasts Events Ebooks¥Y Newsletter Sponsorship ogether and share an address space. An attacker who gains

iately go an to invoke kernel-level functionality, make hyper-

akes unikernels a particular liability when running alongside

sot points from which to attack their neighbors with even more
M or container (at least without privilege escalation).

Architecture v Development ¥ Operations v

Unikernels Will Create More
Security PrObIems Thal‘l They 1 the protections we tested for — i.e. those typically found in

are numerous ways in which the currently abysmal state of

so Ive ere gre se«..reral hypewisor—spe.ci.lic featuras thiat can be taken

ecurity. For instance, many privileged operations, e.q. page

eI R P srformed via requests to the hypervisar rather than directly by
e guest isen mrougn emuiatea aevices; such functionality is akin to syscalls orioctls in a full OS.

Monetheless, as it stands, unikemels remain an unsuitable and unappealing choice for production use, and

...and because of secu rity @ will likely remain so until their security measures are at least brought in line with those of modern, full-featured
operating systems.

https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2019/ncc_group-assessing_unikernel_security.pdf
https://thenewstack.io/unikernels-will-create-security-problems-solve/

46

Getting in Line with Mainstream OSes

Getting in Line with Mainstream OSes

Write or Execute

& unikraft/ unikraft < Pubiic L\ Notificatior

<> Code () Issues 93 11 Pull requests 51) Discussions () Actions] Projects 1 @ Security

Virtual Memory API (x86_64, kvm) #338

byNescul marcrittinghaus wants to merge 11 commits into unikraft:staging from marcrittinghaus:mritting/paging [

LY Conversation 7 0 Commits 11 El Checks 0 Files changed 41

s marcrittinghaus commented on Nov 22, 2021 Member | ===

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platform Configuration | Platform Interface Options to enable virtual
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not supported (e.g., Xen) and also add a dependency on ukfalloc and
ukfallocbuddy , the physical memory allocator libraries.

Getting in Line with Mainstream OSes

Write or Execute

& unikraft/ unikraft = Pubic L\ Notificatior

<> Code () Issues 93 11 Pull requests 51) Discussions () Actions] Projects 1 @ Security Poi nte r a uth e nti Cati O n

& unikraft/ unikraft ' Pubic £\ Natificatior

Virtual Memory API (x86_64,

dyNe Ry marcrittinghaus wants to merge 11 commits into un <> Code (Issues 93 1% Pull requests 51) Discussions ® Actions A Projects 1 @ security

L Conversation 7 -0- Commits 11 El Checks

arch/arm/armé64: Introduce pointer authentication support #369

‘ marcrittinghaus commented on Nov 22, 2021
michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 introduce pointer authentication L[

Prerequisite checklist

Read the contribution guidelines regarding submittir) &Y Conversation 7 - Commits 1 [l Checks o [@ Files changed 5
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi i
. michpappas commented on Dec 12, 2021 Member
Updated relevant documentation.
Base target Prerequisite checklist

« Architecture(s): x86_64 Read the contribution guidelines regarding submitting new changes to the project;

« Platform(s): kvm Tested your changes against relevant architectures and platforms;

+ Application(s): N/A Ran the checkpatch.pl on your commit series before opening this PR;

e : o Updated relevant documentation.
Additional configuration

The PR introduces a configuration option under Platfo Base target
memory.
« Architecture(s): armé4
« CONFIG_PABGING=y + Platform(s): kvm
This will automatically disable all platforms currently not » Application(s): Al

ukfallocbuddy , the physical memory allocator libraried
Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.

Getting in Line with Mainstream OSes

Write or Execute

B unikraft/ unikraft = Pubic

<> Code () Issues 93 I Pull requests 51

Virtual Memory API (x86_64,
marcrittinghaus wants to merge 11 commits into un:

L Conversation 7

-0 Commits 11 [E) Checks

marcrittinghaus commented on Nov 22, 2021

Prerequisite checklist

Read the contribution guidelines regarding submittiry
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi
Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platfo
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not
ukfallocbuddy , the physical memory allocator libraried

) Discussions

L\ Notificatior

() Actions] Projects 1 @ Security

Pointer authentication

& unikraft/ unikraft ' Pubic

<> Code (%) Issues 93 1% Pull requests 51) Discussions () Actions

arch/arm/armé4: Introduce pointer authenticat

michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 if

£ Conversation 7 -0- Commits 1 [l Checks o [@ Files changed 5

0 michpappas commented on Dec 12, 2021

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

« Architecture(s): armé4

[\ Notificatior

ASLR

& unikraft / unikraft « Pubic

<> Code () Issues 93 1 Pull requests 51) Discussions ® Actions M Projects 1

build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

L) Conversation 7

o Commits 1 [Checks 0

[® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.

50

Getting in Line with Mainstream OSes

Write or Execute

... and stack protection, KASan, etc.

Virtual Memory API (x86_64,
marcrittinghaus wants to merge 11 commits into un:

L Conversation 7 -0- Commits 11 El Checks

B unikraft/ unikraft = Pubic

marcrittinghaus commented on Nov 22, 2021

Prerequisite checklist

Read the contribution guidelines regarding submittiry
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi
Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platfo
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not
ukfallocbuddy , the physical memory allocator libraried

L\ Notificatior

<> Code () Issues 93 11 Pull requests 51) Discussions () Actions] Projects 1 @ Security Poi nte r a uth e nti Cati O n

& unikraft/ unikraft ' Pubic

<> Code (%) Issues 93 1% Pull requests 51) Discussions () Actions

arch/arm/armé4: Introduce pointer authenticat

michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 if

£ Conversation 7 -0- Commits 1 [l Checks o [@ Files changed 5

0 michpappas commented on Dec 12, 2021

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

« Architecture(s): armé4

£\ Notificatior AS L R

& unikraft / unikraft « Pubic

<> Code () Issues 93 1 Pull requests 51) Discussions ® Actions M Projects 1

build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

) Conversation 7 -0~ Commits 1 [l Checks o [® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.

51

Write or Execute

... and stack protection, KASan, etc.

Virtual Memory API (x86_64,
marcrittinghaus wants to merge 11 commits into un:

L Conversation 7 -0- Commits 11 El Checks

B unikraft/ unikraft = Pubic

marcrittinghaus commented on Nov 22, 2021

Prerequisite checklist

Read the contribution guidelines regarding submittiry
Tested your changes against relevant architectures
Ran the checkpatch.pl on your commit series befi
Updated relevant documentation.

Base target

= Architecture(s): x86_64
= Platform(s): kvm
= Application(s): N/A

Additional configuration

The PR introduces a configuration option under Platfo
memory.

= CONFIG_PAGING=y

This will automatically disable all platforms currently not
ukfallocbuddy , the physical memory allocator libraried

L\ Notificatior

<> Code () Issues 93 11 Pull requests 51) Discussions () Actions] Projects 1 @ Security Poi nte r a uth e nti Cati O n

& unikraft/ unikraft ' Pubic

<> Code (%) Issues 93 1% Pull requests 51) Discussions () Actions

arch/arm/armé4: Introduce pointer authenticat

michpappas wants to merge 1 commit into unikraft:staging from michpappas:armé4 if

£ Conversation 7 -0- Commits 1 [l Checks o [@ Files changed 5

0 michpappas commented on Dec 12, 2021

Prerequisite checklist

Read the contribution guidelines regarding submitting new changes to the project;
Tested your changes against relevant architectures and platforms;

Ran the checkpatch.pl on your commit series before opening this PR;

Updated relevant documentation.

Base target

« Architecture(s): armé4

£\ Notificatior AS L R

& unikraft / unikraft « Pubic

<> Code () Issues 93 1 Pull requests 51) Discussions ® Actions M Projects 1

build: Option to compile as PIE #239

F¥NeIENM danield20 wants to merge 1 commit into unikraft:staging from danield2e:ddinca/build-as-pIE (&

) Conversation 7 -0~ Commits 1 [l Checks o [® Files changed 3

danield20 commented on Jun 25, 2021

This patch adds the option to compile the unikernel as

a position-independent executable so we can have ASLR.

If the unikernel is compiled as PIE, it cannot run on it's

own. A bootloader will be needed that will come in a future PR.

Signed-off-by: Daniel Dinca dincadaniela7@gmail.com

L\ Notificatior,

@© security

Member

« Platform(s): kvm
« Application(s): All

Additional configuration

This PR introduces CONFIG_ARM64_FEAT PAUTH to enable Pointer Authentication support.

52

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Production-grade testing =
* Continuous testing (Cl/CD, test suite)
* Destructive testing (Fuzzing)

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Production-grade testing =
* Continuous testing (Cl/CD, test suite)
* Destructive testing (Fuzzing)

Significant efforts on continuous testing:

In the Works: Testing, Fuzz Testl

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Production-grade testing =

* Continuous testing (Cl/CD, test suite) ‘@ Concourse

Destructive testing (Fuzzing)

Significant efforts on continuous testing:

* CI/CD pipeline tests patches systematically (Concourse)
* Application-level tests but also kernel unit-tests (uktest)

A.Jung @ FOSDEM'22
https://fosdem.org/2022/schedule/event/massive unikernel matrices with unikraft concourse and more/

56

https://fosdem.org/2022/schedule/event/massive_unikernel_matrices_with_unikraft_concourse_and_more/%E2%80%8B

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

* Not entirely trivial, as most OS fuzzers are tailored for Linux

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

* Not entirely trivial, as most OS fuzzers are tailored for Linux Not "just" a matter

of porting Syzkaller
to Unikraft

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

* Not entirely trivial, as most OS fuzzers are tailored for Linux Not "just" a matter

* Coverage measurement (no Kcov, porting to gcov not Sf EOfE”iSVZka“er
. O UnikKra
without changes)

* Not every system call is fully implemented

In the Works: Testing, Fuzz Testing

To go mainstream, unikernels need not only hardening that's in line with
mainstream OSes, but also production-grade testing

Ongoing efforts on fuzzing as well

* Not entirely trivial, as most OS fuzzers are tailored for Linux Not "just" a matter

* Coverage measurement (no Kcov, porting to gcov not Sf EOfE”iSVZka“er
. O UnikKra
without changes)

* Not every system call is fully implemented
* How does unikernel fuzzing impact the architecture of fuzzers?
* How to design a fuzzer that's ready to "plug and play" in any POSIX OS?

In the Works: Automatic Specialization

Another end of the "testing" topic: how do you determine how good a
configuration really is?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHWA4E

https://www.youtube.com/watch?v=YLf86gcHW4E

In the Works: Automatic Specialization

Another end of the "testing" topic: how do you determine how good a
configuration really is?

Unikernels pitch specialization:
* Your best Nginx configuration is not your best SQLite configuration
* ...and probably not your best Redis configuration either (£

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHWA4E

https://www.youtube.com/watch?v=YLf86gcHW4E

In the Works: Automatic Specialization

Another end of the "testing" topic: how do you determine how good a
configuration really is?

Unikernels pitch specialization:
* Your best Nginx configuration is not your best SQLite configuration
* ...and probably not your best Redis configuration either (£

The number of possible configurations: astronomical scale

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHWA4E

https://www.youtube.com/watch?v=YLf86gcHW4E

In the Works: Automatic Specialization

Another end of the "testing" topic: how do you determine how good a
configuration really is?

Unikernels pitch specialization:
* Your best Nginx configuration is not your best SQLite configuration
* ...and probably not your best Redis configuration either (£

The number of possible configurations: astronomical scale
* Small subset of configuration options (Nginx) ~ 103
* How do you explore this? Can you use optimization algorithms? ML?

A. Jung et al. @ APSys'21 https://www.youtube.com/watch?v=YLf86gcHWA4E

https://www.youtube.com/watch?v=YLf86gcHW4E

In the Works: Compartmentalization

In the Works: Compartmentalization

Traditional understanding of unikernels:
Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

In the Works: Compartmentalization

Traditional understanding of unikernels:
Unikernel = one single trust domain (kernel + application)
(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety,
properties, requirements...

In the Works: Compartmentalization

Traditional understanding of unikernels:

Unikernel = one single trust domain (kernel + application)

(Used to) make sense.

Certain applications are large, with heterogeneous components: trust, safety,
properties, requirements...

And at the same time we see (re-)appearing a lot of lightweight isolation
mechanisms (protection keys, HW capabilities, SFl, etc.)

In the Works: Compartmentalization

There is an opportunity to use these mechanisms to make unikernels
even safer without yielding their benefits!

In the Works: Compartmentalization

There is an opportunity to use these mechanisms to make unikernels f\ex
even safer without yielding their benefits! OS

This is what initially motivated our work FlexOS: can we reconcile
unikernels/libOSes with isolation to obtain a new OS model that offers not only
specialization towards performance, but also towards safety?

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)

https://fosdem.org/2022/schedule/event/tee_flexos/

In the Works: Compartmentalization

There is an opportunity to use these mechanisms to make unikernels f\ex
even safer without yielding their benefits! OS

This is what initially motivated our work FlexOS: can we reconcile
unikernels/libOSes with isolation to obtain a new OS model that offers not only
specialization towards performance, but also towards safety?

Other groups explored this direction: CubicleOS (also ASPLOS, 2021). Explore
intra-unikernel isolation with Intel MPK.

H. Lefeuvre et al. @ ASPLOS'22, come to our talk Thursday morning!
(also @ FOSDEM'22 https://fosdem.org/2022/schedule/event/tee_flexos/)

https://fosdem.org/2022/schedule/event/tee_flexos/

How about Compatibility?

Compatibility: a Solved Problem?

Historical unikernels: hand-written for an application (ClickOS).

Compatibility: a Solved Problem?

Historical unikernels: hand-written for an application (Clickt Sz

Compatibility: a Solved Problem?

. Terrip,
Historical unikernels: hand-written for an application (C

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Compatibility: a Solved Problem?

. Terripy
Historical unikernels: hand-written for an application (C

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

Graphene/Gramine: https://gramineproject.io/

Compatibility: a Solved Problem?

. Terripy
Historical unikernels: hand-written for an application (C

But we're not in the 2010s anymore, Unikraft aims at Linux/POSIX compliance.

Growing number of supported system calls: now 170+
As a point of comparison, Graphene (Gramine) also supports about ~170

To be clear: Unikraft is neither fully Linux compatible, nor fully POSIX compliant!

* The good old fork() problem
* Not all system calls are fully implemented

But do you really need to be fully compatible to be useful?

Graphene/Gramine: https://gramineproject.io/

Compatibility: a Solved Problem?

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

Compatibility: a Solved Problem?

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

Compatibility: a Solved Problem?

But do you really need to be fully compatible to be useful?

Many applications that use unsupported features tend to be bad candidates for
unikernelization anyways (system admin tools, heavily multiprocess apps that cannot
use threads).

For the rest, partial compatibility is just fine if porting is a reasonable task.

And in 2022, it is.

Given the benefits of Unikraft, a week of porting is a minor annoyance.
All you need is a good application test-suite (but you have one, right? (<))

H. Lefeuvre et al. @ USENIX ;login
https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

https://www.usenix.org/publications/loginonline/unikraft-and-coming-age-unikernels

Conclusion

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none
that managed to:

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none
that managed to:

* provide good compatibility

* excellent performance

* transparent integration in major
deployment workflows

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none

that managed to:

* provide good compatibility * take security seriously

* excellent performance * meet production-grade testing standards

* transparent integration in major * good debuggability
deployment workflows

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none

that managed to:

* provide good compatibility * take security seriously

* excellent performance * meet production-grade testing standards

* transparent integration in major * good debuggability
deployment workflows

And that's fine, because they were just research projects

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none
that managed to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must
manage it. We want this project to be Unikraft.

In @ Nutshell

In the last decade we've seen a lot of unikernels come and go, but none
that managed to:

* provide good compatibility * take security seriously
* excellent performance * meet production-grade testing standards
* transparent integration in major * good debuggability

deployment workflows

And that's fine, because they were just research projects

Now, if we want to see unikernels in production one day, one project must
manage it. We want this project to be Unikraft.

Unikraft is not there yet. But it's progressing, and we hope to see it
reaching full maturity in the coming year

In @ Nutshell

Over time, doing all this engineering proved fruitful on the research side

In @ Nutshell

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such
that undergrads and grad students quickly get to understand it

In @ Nutshell

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in
the long run

In @ Nutshell

Over time, doing all this engineering proved fruitful on the research side

Unikraft turns out to be an excellent substrate for top-tier publications

It's open, small, clean, modular, fast to experiment with, such
that undergrads and grad students quickly get to understand it

Probably one of the good examples where starting clean-slate pays out in
the long run

What will the broader systems community build with Unikraft?

THE

L LINUX

FOUNDATION

Ren

Project

Pushing Unikernels to Production!

Unikraft Community:
Unikraft Cloud:
Code:

https://unikraft.org/
https://unikraft.io/
https://github.com/unikraft

	Slide 1
	A Decade of Unikernels...
	A Decade of Unikernels... (2)
	A Decade of Unikernels... (3)
	A Decade of Unikernels... (4)
	A Decade of Unikernels... (5)
	A Decade of Unikernels... (6)
	A Decade of Unikernels... (7)
	A Decade of Unikernels... (8)
	A Decade of Unikernels... (9)
	Unikernels are Research Prototypes
	Unikernels are Research Prototypes (2)
	Unikernels are Research Prototypes (3)
	Unikernels are Research Prototypes (4)
	Unikernels are Research Prototypes (5)
	Unikernels are Research Prototypes (6)
	In the Works for Unikraft
	In the Works for Unikraft (2)
	In the Works for Unikraft (3)
	In the Works for Unikraft (4)
	In the Works for Unikraft (5)
	In the Works for Unikraft (6)
	In the Works for Unikraft (7)
	In the Works for Unikraft (8)
	Integration & Scalability
	Integration and Scalability
	Integration and Scalability (2)
	In the Works: Integration
	In the Works: Integration (2)
	In the Works: Integration (3)
	In the Works: Integration (4)
	In the Works: Integration (5)
	In the Works: Integration (6)
	In the Works: Debugging
	In the Works: Debugging (2)
	In the Works: Debugging (3)
	In the Works: Debugging (4)
	Outstanding Question: Scalability?
	Outstanding Question: Scalability? (2)
	Outstanding Question: Scalability? (3)
	Outstanding Question: Scalability? (4)
	Outstanding Question: Scalability? (5)
	Outstanding Question: Scalability? (6)
	Security & Stability
	Security and Stability
	Security and Stability (2)
	Getting in Line with Mainstream OSes
	Getting in Line with Mainstream OSes (2)
	Getting in Line with Mainstream OSes (3)
	Getting in Line with Mainstream OSes (4)
	Getting in Line with Mainstream OSes (5)
	Getting in Line with Mainstream OSes (6)
	In the Works: Testing, Fuzz Testing
	In the Works: Testing, Fuzz Testing (2)
	In the Works: Testing, Fuzz Testing (3)
	In the Works: Testing, Fuzz Testing (4)
	In the Works: Testing, Fuzz Testing (5)
	In the Works: Testing, Fuzz Testing (6)
	In the Works: Testing, Fuzz Testing (7)
	In the Works: Testing, Fuzz Testing (8)
	In the Works: Testing, Fuzz Testing (9)
	In the Works: Automatic Specialization
	In the Works: Automatic Specialization (2)
	In the Works: Automatic Specialization (3)
	In the Works: Automatic Specialization (4)
	In the Works: Compartmentalization
	In the Works: Compartmentalization (2)
	In the Works: Compartmentalization (3)
	In the Works: Compartmentalization (4)
	In the Works: Compartmentalization (5)
	In the Works: Compartmentalization (6)
	In the Works: Compartmentalization (7)
	How about Compatibility?
	Compatibility: a Solved Problem?
	Compatibility: a Solved Problem? (2)
	Compatibility: a Solved Problem? (3)
	Compatibility: a Solved Problem? (4)
	Compatibility: a Solved Problem? (5)
	Compatibility: a Solved Problem? (6)
	Compatibility: a Solved Problem? (7)
	Compatibility: a Solved Problem? (8)
	Conclusion
	In a Nutshell
	In a Nutshell (2)
	In a Nutshell (3)
	In a Nutshell (4)
	In a Nutshell (5)
	In a Nutshell (6)
	In a Nutshell (7)
	In a Nutshell (8)
	In a Nutshell (9)
	In a Nutshell (10)
	Slide 93

