
Unikernels: General Introduction

ASPLOS 2022 Unikraft Tutorial, March 1st

Pierre Olivier
The University of Manchester

Introductory example:
my website in the cloud

2

Full-fledged Virtual Machine

Cloud provider:

Hypervisor

Hardware

OS: Linux Kernel

Full-fledged Virtual Machine

Application

Libraries

Linux
distribution

Hypervisor

Hardware

Full-fledged Virtual Machine

Linux
Kernel

Linux
Kernel

Hypervisor

Hardware

Full-fledged Virtual Machine

Application

Libraries

Linux
distribution

OS services
used

Legend :

Useful software

Software bloat!

Full-fledged Virtual Machine

Hypervisor

Hardware

Application

Libraries

Linux
distribution

Linux
Kernel

OS services
used

Software bloat leads to:

→ Increased attack
 surface
→ Additional costs
→ Performance loss

Full-fledged Virtual Machine

Hypervisor

Hardware

Application

Libraries

Linux
distribution

Linux
Kernel

OS services
used

Legend :

Useful software

Software bloat!

OS services
used

Application

Libraries

OS Layer

Unikernel

Full-fledged Virtual Machine

Hypervisor

Hardware

Application

Libraries

Linux
distribution

Linux
Kernel

Legend :

Useful software

Software bloat!

Definition

10

Unikernel: application + dependencies + thin OS compiled as a static binary
running on top of a hypervisor ¹

¹ Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13

Definition

11

Unikernel: application + dependencies + thin OS compiled as a static binary
running on top of a hypervisor ¹

¹ Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13
² Zhang et al., “KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud Virtualization, ATC’18

Single-*
● Single-purpose: run 1 application

● Want to run multiple applications? run multiple unikernels
● Single-process

● Want to run a multi-process application? run multiple unikernels ²
● However, SMP (multicores) and multithreading are supported

● Single-binary and single address space for application + kernel
● No kenel/user isolation, everything runs with full privileges

Benefits

12

Lightweight virtualization
● Contain and run only what is absolutely necessary to the application
● Security advantage: small attack surface
● Cost advantage: memory/disk footprint reduction
● Considered as a secure alternative to containers

● Strong inter-unikernels (i.e. VMs) isolation on a host

13

Per-application tailored kernel
● LibOS/Exokernel model
● The kernel itself contains only what is needed

Benefits
Lightweight virtualization
● Contain and run only what is absolutely necessary to the application
● Security advantage: small attack surface
● Cost advantage: memory/disk footprint reduction
● Considered as a secure alternative to containers

● Strong inter-unikernels (i.e. VMs) isolation on a host

14

Reduced OS noise, increased performance
● Sub-second boot time
● Low system call latency

● App + kernel run with full privileges (ring 0), system calls are function calls

Per-application tailored kernel
● LibOS/Exokernel model
● The kernel itself contains only what is needed

Benefits
Lightweight virtualization
● Contain and run only what is absolutely necessary to the application
● Security advantage: small attack surface
● Cost advantage: memory/disk footprint reduction
● Considered as a secure alternative to containers

● Strong inter-unikernels (i.e. VMs) isolation on a host

Application Domains

15

● Cloud applications: servers, micro-services, SaaS, Network Function Virtualization

● Embedded virtualization, Edge computing, IoT

● VM introspection, malware analysis, secure desktop applications

● HPC

Unikernel Models

16

Unikernels can be classified based on the targeted language/level of compatibility for
supported applications:

● Pure memory safe languages (OCamL, Erlang, Haskell): MirageOS ³, LING ⁴, HalVM ⁵

● C/C++ source-level semi-posix API: HermitCore ⁶, Rumprun ⁷

● Various levels of binary-compatibility: Unikraft (syscalls) 8, HermiTux (syscalls) 9,
Lupine Linux (libc) 10, OSv (libc) 11

● Rust/Go: RustyHermit 12, Clive 13

● More: http://unikernel.org/projects/, https://github.com/topics/unikernel

http://unikernel.org/projects/
https://github.com/topics/unikernel

Unikernel vs. Containers

17

Reduced attack surface vs. containers
● Important in multi-tenant environment (e.g. cloud) when untrusting tenants share

a physical machine

Host kernel

Container

350+ syscalls 😥

Host kernelTrusted

Not trusted

Lightweight, not
secure

Unikernel vs. Containers

18

Reduced attack surface vs. containers
● Important in multi-tenant environment (e.g. cloud) when untrusting tenants share

a physical machine

Host kernel Hypervisor

Container

350+ syscalls 😥

Host kernel

Traditional VM

Simple HW interface/
a few hypercalls

Trusted

Not trusted

Lightweight but
not secure

Secure but
heavyweight

Unikernel vs. Containers

19

Reduced attack surface vs. containers
● Important in multi-tenant environment (e.g. cloud) when untrusting tenants share

a physical machine

Host kernel Hypervisor Hypervisor

Container

350+ syscalls 😥

Host kernel

Traditional VM

Simple HW interface/
a few hypercalls

Unikernel

Trusted

Not trusted

Lightweight, not
secure

Heavyweight,
secure

Lightweight
and secure

Simple HW interface/
a few hypercalls

Ongoing Challenges

20

Compatibility
● Many models require source code access
● Unsupported OS features & languages
● Burden of porting is generally on the application's programmer

Ongoing Challenges

21

Compatibility
● Many models require source code access
● Unsupported OS features & languages
● Burden of porting is generally on the application's programmer

Compatibility issues addressed in Unikraft through binary-compatibility
● Shifts the porting effort for the app. programmer into a supporting one placed on

the kernel developers

Ongoing Challenges

22

Compatibility
● Many models require source code access
● Unsupported OS features & languages
● Burden of porting is generally on the application's programmer

Compatibility issues addressed in Unikraft through binary-compatibility
● Shifts the porting effort for the app. programmer into a supporting one placed on

the kernel developers

Maturity: unikernels are still research prototypes and there are many bugs and
standard features lacking. Most are academic projects and it’s hard to get support
● Unikraft is growing fast and has a huge community of contributors

	Slide 1
	Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

