





### **Unikernels: General Introduction**

**Pierre Olivier** The University of Manchester

ASPLOS 2022 Unikraft Tutorial, March 1st















### Introductory example: my website in the cloud



Cloud provider:



















### Definition

**Unikernel**: application + dependencies + thin OS compiled as a static binary running on top of a hypervisor <sup>1</sup>

<sup>1</sup> Madhavapeddy et al., "Unikernels: Library Operating Systems for the Cloud", ASPLOS'13

### Definition

**Unikernel**: application + dependencies + thin OS compiled as a static binary running on top of a hypervisor <sup>1</sup>

Single-\*

#### • Single-purpose: run 1 application

• Want to run multiple applications? run multiple unikernels

• Single-process

- Want to run a multi-process application? run multiple unikernels<sup>2</sup>
- However, SMP (multicores) and multithreading are supported
- Single-binary and single address space for application + kernel
  - No kenel/user isolation, everything runs with full privileges

<sup>1</sup> Madhavapeddy et al., "Unikernels: Library Operating Systems for the Cloud", ASPLOS'13
<sup>2</sup> Zhang et al., "KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud Virtualization, ATC'18

### Benefits

#### Lightweight virtualization

- Contain and run only what is absolutely necessary to the application
- Security advantage: small attack surface
- Cost advantage: memory/disk footprint reduction
- Considered as a secure alternative to containers
  - Strong inter-unikernels (i.e. VMs) isolation on a host



## Benefits

#### Lightweight virtualization

- Contain and run only what is absolutely necessary to the application
- Security advantage: small attack surface
- Cost advantage: memory/disk footprint reduction
- Considered as a secure alternative to containers
  - Strong inter-unikernels (i.e. VMs) isolation on a host

### Per-application tailored kernel

- LibOS/Exokernel model
- The kernel itself contains only what is needed





### Benefits

#### Lightweight virtualization

- Contain and run only what is absolutely necessary to the application
- Security advantage: small attack surface
- Cost advantage: memory/disk footprint reduction
- Considered as a secure alternative to containers
  - Strong inter-unikernels (i.e. VMs) isolation on a host

### Per-application tailored kernel

- LibOS/Exokernel model
- The kernel itself contains only what is needed

#### Reduced OS noise, increased performance

- Sub-second boot time
- Low system call latency
  - App + kernel run with full privileges (ring 0), system calls are function calls

# **Application Domains**

- Cloud applications: servers, micro-services, SaaS, Network Function Virtualization
- Embedded virtualization, Edge computing, IoT
- VM introspection, malware analysis, secure desktop applications
- HPC

### **Unikernel Models**

Unikernels can be classified based on the targeted language/level of compatibility for supported applications:

- Pure memory safe languages (OCamL, Erlang, Haskell): MirageOS<sup>3</sup>, LING<sup>4</sup>, HalVM<sup>5</sup>
- C/C++ source-level semi-posix API: HermitCore <sup>6</sup>, Rumprun <sup>7</sup>
- Various levels of binary-compatibility: Unikraft (syscalls)<sup>8</sup>, HermiTux (syscalls)<sup>9</sup>, Lupine Linux (libc)<sup>10</sup>, OSv (libc)<sup>11</sup>
- *Rust/Go*: RustyHermit <sup>12</sup>, Clive <sup>13</sup>
- More: http://unikernel.org/projects/, https://github.com/topics/unikernel

# Unikernel vs. Containers

#### Reduced attack surface vs. containers

• Important in multi-tenant environment (e.g. cloud) when untrusting tenants share a physical machine



# Unikernel vs. Containers

#### Reduced attack surface vs. containers

• Important in multi-tenant environment (e.g. cloud) when untrusting tenants share a physical machine



# Unikernel vs. Containers

#### Reduced attack surface vs. containers

• Important in multi-tenant environment (e.g. cloud) when untrusting tenants share a physical machine



# **Ongoing Challenges**

### Compatibility

- Many models require source code access
- Unsupported OS features & languages
- Burden of porting is generally on the application's programmer

# **Ongoing Challenges**

#### Compatibility

- Many models require source code access
- Unsupported OS features & languages
- Burden of porting is generally on the application's programmer

### Compatibility issues addressed in Unikraft through *binary-compatibility*

• Shifts the porting effort for the app. programmer into a *supporting* one placed on the kernel developers

# **Ongoing Challenges**

### Compatibility

- Many models require source code access
- Unsupported OS features & languages
- Burden of porting is generally on the application's programmer

#### Compatibility issues addressed in Unikraft through *binary-compatibility*

• Shifts the porting effort for the app. programmer into a *supporting* one placed on the kernel developers

**Maturity:** unikernels are still research prototypes and there are many bugs and standard features lacking. Most are academic projects and it's hard to get support

• Unikraft is growing fast and has a huge community of contributors